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Special properties of the Riemannian metric for energy hypersurfaces, defined 
within the framework of the Born-Oppenheimer approximation, are utilized in 
devising a partitioning scheme for domains of nuclear coordinates. The chemic- 
ally important coordinate domains are distinguished from domains of lesser 
importance by their curvature properties. Conditions are derived for the stability 
of minimum energy reaction paths, and the effects of instability regions are 
investigated. Instability domains along minimum energy paths may allow small 
vibrational perturbations to alter the outcome of the chemical reaction. 
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1. Introduction 

In the Born-Oppenheimer approximation [1 ] a unique energy hypersurface may be 
assigned to any electronic state of a given molecule. In this approximation the 
molecular total energy, Et, is the sum of a classical Coulomb term En, describing 
the nuclear repulsion of the fixed nuclei, and a quantum mechanical term Ee, 
representing the electronic energy of the given electronic state of the system. The 
total energy depends parametrically on the nuclear coordinates r: 

Et = Et(r). 

This Et(r) function is well defined for most nuclear configurations, although within 
the Hartree-Fock and related approximations neither En(r) nor Ee(r) is adequately 
defined for points r where the coordinates of two or more of the nuclei become 
identical (processes leading to such points would involve nuclear reactions). These 
points, however, are of little chemical significance, and Et(r) is well defined over all 
chemically realistic values of the internal coordinates. After excluding all the above 
"unrealistic" points, together with their immediate neighbourhoods, for all the 
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allowed r points function Et(r) is continuous and differentiable. Consequently, 
Et(r) may be represented geometrically as an energy hypersurface over the nuclear 
coordinates r. 

Although the basic assumption of the Born-Oppenheimer approximation, .i.e. the 
separability of nuclear and electronic motion, is not strictly valid, the resulting error 
is usually small. Consequently, chemical reactions and conformational changes may 
be studied in terms of energy hypersurfaces, that correspond to potential functions 
for the nuclear motion. 

Critical points of E(r) 1, i.e. points where the gradient vector is zero, g(r) = 0, are 
of particular importance. Minima correspond to most favoured nuclear arrange- 
ments that belong to reactant or product structures. First order saddle points [2], 
i.e. critical points where the Hessian matrix H of the second derivatives has exactly 
one negative eigenvalue, correspond to transition state structures. 

Those curves P on the hypersurface that interconnect two minima, correspond to 
reaction paths. Among the reaction paths particularly important are those for which 
the energy barrier is minimum. Certain paths P that fulfill this condition are called 
minimum energy paths and are defined by the following properties: Minimum 
energy paths follow the direction of steepest descent from the transition state 
toward both minima. The definition of minimum energy reaction path P, in the 
form as given for the "intrinsic reaction coordinate" by Fukui [3, 4] will be the 
most useful for our purposes: P is a curve that interconnects two minima, passes 
through a transition state and is orthogonal to any equipotential contour surface 
crossed. These minimum energy paths correspond to idealized, vibrationless 
rearrangements of the nuclei. While this model is clearly a gross oversimplification, 
it is nevertheless reasonable to assume that a real chemical process can be approxi- 
mated by reaction paths that do not deviate much from the minimum energy path, 
at least at low temperatures. What deviation is to be regarded small or large, 
however, requires a clear definition. 

The classical image of a mass point moving along a potential surface suggests that 
those coordinate domains that contain the minimum energy paths and their close 
neighbourhoods are likely to be of the greatest chemical importance. Criteria for 
the specification and determination of these chemically important coordinate 
domains are clearly of some interest. Alternatively, one may attempt to specify 
domains of the nuclear coordinates r that correspond to unlikely nuclear arrange- 
ments. It has been demonstrated that no minimum energy path may pass through a 
finite neighbourhood of non-degenerate critical points of index A >/ 2, where index 
A is the number of negative eigenvalues of the Hessian matrix, since these points 
correspond to local maxima of a A dimensional projection of the energy hyper- 
surface [2]. Consequently, these coordinate domains are of little chemical import- 
ance provided that the chemical process is confined to a single surface. If  criteria 
for the determination of such domains can be established, one may disregard them 
when investigating conformational phenomena or chemical reactions that do not 

1 In the following discussion subscript t will be omitted. 
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involve electronic excitations, i.e. transitions between different energy surfaces. On 
the other hand, if such surface to surface transition occurs, e.g. in a photochemical 
reaction, the point describing the new state of the system may very well fall into a 
coordinate region that is usually avoided by ordinary reaction paths on the given 
surface. 

In the present study we shall address the following problems: 

1) What are those domains of nuclear coordinates r that are likely to contain the 
most probable reaction paths on a given energy hypersurface ? 

2) In what coordinate domains are minimum energy paths stable with respect to 
displacements orthogonal to the steepest descent direction? 

3) What is the likelihood that actual reaction paths show large deviations from the 
minimum energy path in a given coordinate domain ? 

4) Under what conditions can one assign a minimum energy path (as defined above) 
to a unique reaction mechanism ? 

Whenever convenient, we shall use a tensor formalism that is not affected by the 
choice of internal coordinates. For the concepts of tensor calculus used in this paper 
the reader is referred to standard texts on Riemannian geometry [5, 6] and to recent 
reviews of the relevant aspects of hypersurfaces and differential geometry [2, 4]. 

2. Discussion 

We shall assume that the nuclear arrangements of the molecular system are 
specified by position vectors r of dimension n = 3N - 6, where N is the number 
of  nuclei. Vector r may be given in terms of contravariant components r * or 
covariant components r~, that are interrelated by the equation 

r~ = g, jr  s (1) 

In Eq. (1) g~j is the Riemannian metric tensor, characteristic to the given coordinate 
representation of the n-dimensional space R [5, 6]. Throughout this paper the 
usual summation convention is used (following Einstein): any index which occurs 
twice in the same term is to be summed. The infinitesimal distance ds,  a scalar 
quantity, is connected with the metric tensor g,j by 

ds  2 = gi~ d g  dr  J (2) 

The scalar product of two vectors r and p, the norm ]r [, and the angle ~ between 
two vectors are defined the usual way [6], by 

r . p  = giyrip j = rip~ (3) 

Ir I = (r 'r , )  lz2 (4) 

and 

r-p (5) 
cos ~ - I r l  Ipl' 

respectively. 

We shall use a left superscript m for quantities in an m-dimensional space mR, e.g. 
mr, mg~j. The summation convention will not apply for this index, and whenever 
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m = n, it will be omitted. I t  is convenient to consider energy E(r)  itself as the 
n + 1st component  [2, 4, 7] and define vector ~+Ir by contravariant (covariant) 
components as 

~§ (6a) ~ §  ~(  r k = r k )  f o r k =  1 . . . .  n, 

+ 1 r ~ + l  = ~ + l r ~  + l  = E(r) ( 6 b )  

As it has been pointed out earlier [2, 4] the transformation properties of  the energy 
component  are fundamentally different from that of  the internal coordinates and 
the Riemannian metric ~+ lg~j of  "+ 1R is special: 

n,+ l~e n +  
6 n + l , i  = lgi.n+l = 8i,~+1. (7) 

This property of "+ lg~y is not affected by coordinate transformations in the n- 
dimensional space if the Jacobian determinant of the transformation is non-zero. 
Consequently, the distance "+ ~s in the n + 1 dimensional space "+ 1R can be gener- 
ated as the Pythagorean distance of components ds and dE: 

~+lds= = ds = + dE 2 (8) 

This relation is very useful when comparing purely geometrical displacements of  
the nuclei and the generated displacements along the energy hypersurface. Naturally, 
component  ds itself is not a Pythagorean distance in general, as it is evident from 
Eq. (2). I f  dE = 0 for an infinitesimal interval, we shall call the curve horizontal in 
this interval. 

The terms reaction path and reaction coordinate are frequently used interchange- 
ably, although by three-dimensional geographical analogy the common interpreta- 
tion of path (a geometrical object) is different from that of  a coordinate (a numerical 
measure). Indeed, the intrinsic reaction coordinate, as defined originally [3, 4], is a 
curve and one may refer to this curve as "intrinsic reaction path".  

In fact, there are four different concepts we are concerned with: 

1) The curve ~ + tp, describing the reaction in the n + 1-dimensional space ~ § I R. This 
curve is analogous to a three-dimensional path on a relief map in the usual, 
geographic sense, energy taking the role of  elevation. In the present paper we 
shall refer to curve ~+~P as the n + 1 dimensional relief path or total reaction 
path. 

2) A numerical measure, how far  the reaction has progressed along the ~+ zP curve in 
n + 1 dimensions. A suitable measure is the ~ § Zs arc length, measured from the 
minimum of the reactants: 

~+ls = [ ~+lds (9a) 
Jn + l p  

where 

~+lds2 = ~+Xg~j ~+ldri ~+ldrJ (9b) 

Arc length ~ § ~s will be referred to as the relief path coordinate or total reaction 
coordinate of total reaction path ~+ xp. 
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3) The projection P o f  the above ~ + 1p curve onto the n-dimensional coordinate space R. 
P corresponds to the actual physical displacements of the nuclei as described by 
the nuclear coordinates. The resulting curve is analogous to the curve on a two- 
dimensional map, representing a real geographical path of three dimensions. P 
is the projected image of the relief path "+IP on a "horizontal"  hyperplane, 
with no reference to elevation, i.e. to energy. In the present paper we shall refer 
to curve P as the reaction path. 

4) A numerical measure, how far  the reaction has progressed along the above P curve 
in n dimensions. A suitable measure is the s arc length, measured from the 
coordinate point corresponding to the minimum of the reactants. For a given P 
curve we shall call s the reaction coordinate. 

= f ,  ds (10) s 

The relation between these curves, as represented by a three-dimensional example, 
is shown in Fig. 1. 

The total variation of function E(r) along curve P is defined [8] as 

v(E) = sup ~ lE(r,3 - E(r,~+OI, (11) 
k 

r~ ~ P and {rk} : s(r~) < s(rk + l) 

Fig. 1. The relations between relief path 
+ 1p, reaction path P, relief path coordinate 
+ is and reaction coordinate s. Symbols m and 

S stand for minima and saddle points, 
respectively 
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If  in an interval I c p (OE/gs) does not change sign, then within I the total variation 
v(E) is equal to the maximum variation ~-(E), 

~-(E) = v(E) (12) 

where z(E) is defined as 

�9 (E) = max [E(rl) - E(vz)[, rl, r2 ~ I (13) 

The maximum variation ~-(E) and the total variation v(E) of energy may be used 
to characterize segments of the reaction path and it can be shown that in a set of 
reaction paths interconnecting two minima v(E) is minimum for the minimum 
energy path [9]. Due to the special properties (7) of Riemannian metric tensor 
,+ lgfj, the total variation v(E) of the energy along the reaction path may be ex- 
pressed as 

v ( E ) =  f,~+ap ~ '~+ads (14a) 

where 

IdEI  = ( " + ~ d s  2 - d s 2 )  ~'~ (14b) 

If  P is a minimum energy reaction path, then the corresponding relief path "+aP 
follows the direction of steepest descent, i.e. the negative gradient - g  on the hyper- 
surface. This property of minimum energy paths, and the fact that at the critical 
points the gradient is zero, 

g(r) = 0, (15) 

suggests that the properties of gradient vectors g(r) may be used to characterize 
various domains of energy hypersurfaces. 

For each point r ~ R an n - 1-dimensional subspace "-  ~R(r) may be defined with 
the following properties: 

~-aR(r) = {x(r) : x(r).a(r) = 0} (16) 

that is, the elements x(r) ~ ~-1R(r) are orthogonal to a reference vector a(r) in the 
sense defined by Eqs. (3) and (5). If  r is an ordinary point with a non-vanishing 
gradient, i.e. g(r) # O, then a(r) is taken as the normalized gradient vector 

g(r)  (17) a(r) = ~(r) = ]g(r)]" 

Consequently, for such ordinary points r ,g(r)# O, the "-~R(r) subspace is 
uniquely defined as the one orthogonal to the gradient. 

I fg ( r )  = O, i.e. r = re, a critical point, then there is no unique n - 1-dimensional 
subspace orthogonal to g(rc), i.e., to the 0 vector. Nevertheless, for any given 
steepest descent path P a unique "-~Re(ro) subspace may be defined by assuming 
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continuous changes in reference vector a(r). Let us select infinite point series (rk} 
on the steepest descent path P with the following properties: 

rk ~ P (18a) 

s(r~) < s(rc) (1.8b) 

g(rl) ~ 0 (18c) 

lim r~ = rc (18d) 
k 

For the given steepest descent path P reference vector a(rc) may be chosen as 

a(rc) = ap(rc) = lira a(rk) (19) 
k 

where index P refers to the given path P. For steepest descent paths at ordinary 
points and for minimum energy paths at both ordinary and critical points unit 
vector a(r) is tangent to P. Vector a(r) will be referred to as the path vector. 

A unique subspace "-  1Rp(rc) may be defined in terms of a(rc) = av(rc) as 

- 1Rp(re) = {x(re) : x(rc), ap(rc) = 0} (20) 

As condition (18b) on the reaction coordinates implies, the sign of ap(re) depends 
on the orientation of the path P, i.e. on the assignment of labels " reac tant"  and 
"p roduc t "  to the minima. In this sense ap(ro) is not unique. Nevertheless, ~- 1Rp(rc) 
is unique, since it is orthogonal to both ap(re) and - ap(re). Two further comments 
are in order here. Several different steepest descent paths P may pass through a 
critical point rc and subspace ~- ~R~,(rc) depends on the path P, as well as on point 
re. By contrast, at ordinary points r where g(r) ~ O, there is only one steepest 
descent path passing through r and ~-~R(r) is unique for every point r ~ re. It is 
also noteworthy that definitions (19) and (20) are applicable to degenerate as well 
as non-degenerate critical points, since only the first point r~ of point series (rk} is 
required explicitly to be a non-critical point. 

At a critical point rc an ~-1R(re) subspace may also be defined in terms of the 
curvature properties of the hypersurface itself, rather than in terms of various 
steepest descent paths P. At a critical point rc the Hessian matrix H(r) may be 
diagonalized by a suitable coordinate transformation [2]. Reference vector all(re) 
may be chosen as the eigenvector belonging to the lowest eigenvalue of H(r) .  If the 
lowest eigenvalue is k-fold degenerate (k > 1) then any vector a r 0 from the 
k-dimensional degenerate subspace may be selected. A path-independent subspace 

-~R(rc) may then be defined at a critical point re as 

"-~R(ro) = {x(re): x(re), a~(ro) = 0} (21) 

The definition of minimum energy reaction path implies that whenever P is such a 
path and re is a first-order critical point, i.e. h(rc) = 1, then 

"-  1R(re) = ~- ~Rp(rc) (22) 

that is, Eqs. (20) and (21) define the same subspace. In the forthcoming discussion 
it is assumed that for critical points rc with indices/~(re) = 0 or 1(re) = 1 definition 
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(20) is applied with reference to a m i n i m u m  energy reaction pa th  P, unless otherwise 
stated, and indices P and C are usually omitted. 

Along any steepest-descent reaction path P the subspace "-1R(r) depends para- 
metrically on vector a(r), consequently on position vector r. That is, to each point 
r of a (generally non-linear) reaction path P a different but fixed "-  1R(r) subspace 
may be assigned. One may then investigate displacements within each subspace 

-1R(r), keeping in mind that the entire subspace belongs to a given point r of the 
reaction path P. In general, "-1R(r) is a hyperplane tangent to the equipotential 
contour surface at point r. In general, however, ~-lR(r),  being a hyperplane, is not 
identical to the equipotential contour surface passing through point r, generally 
they are merely in contact at point r. The cross section of the hypersurface over 
subspace "-IR(r)  [i.e. excluding variations along a(r)l is locally horizontal at r, since 
" - IR(r)  is either orthogonal to the gradient (Eq. (16)) or is a subspace defined at a 
critical point where the hypersurface itself is horizontal (Eq. (20)). Consequently, 
the above cross section of the hypersurface over n-lR(r)  must have a critical point 
at r. This property greatly simplifies the analysis of minimum energy reaction 
paths, since it ensures that the important curvature properties near the reaction 
path may be studied in terms of the conventional concept of the Hessian matrix 

One may select a set of basis vectors {~-lyk(r)} in '~-~R(r) with the following 
properties: 

" -  lyk(r), a(r) = 0 (23a) 

and 

"-  ~yk(r)."- ~yz(r) = 3kz (23b) 

Any vector "-  i x ( r )  ~ " -  ZR(r) can be expressed as a linear combination of vectors 
.-%(r) 

" -  i x ( r )  = x ~" - lyk(r )  (24) 

where the x k contravariant coordinates refer to the given {"-~yk(r)} basis. 

Within the " - ~ R ( r )  subspace an infinitesimal displacement from point r does not 
change the energy in first order. The second-order changes are described by the 
n - 1-dimensional Hessian matrix " - ~ H ( r ) ,  with elements 

O2E 
" - ~ H ( r ) k t  = OxkSxt (25) 

When restricted to subspace "-  ~R(r), the general expression of the extended Hessian 
matrix [4], 

82E p~ l 8E 
~- lHkz  = 8x~Sx~ 8x-- 7, (26) 

where F~l is the Christoffel symbol of the second kind [6], reduces to Eq. (25). 
Indeed, in our case the second term in Eq. (26) is zero, since at point r the gradient 
has no non-zero component within subspace ~-~R(r). 
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At each point r the {"-lyk(r)} basis may be chosen as one, on which the " -1H( r )  
Hessian matrix is diagonal: 

"-lH(r)k~ = --32E ~ = a~ (27) 
r3x k2 

(no summation for k) 

where the a~ scalar is the kth eigenvalue of " - I H ( r ) .  

This diagonal form of "-~H(r) ,  implicitly depending on gradient g(r) or on vector 
a(r), will be used for the characterization of points r e R. It  is clear from the 
definition of subspace " -  iR(r) that at a critical point ro the following relation holds 
for indices h of H(rc) and/z of " -  ~H(rc): 

~ ~ (28) 

Minima and first-order saddle points are the only non-degenerate critical points 
that may fall on a minimum energy path P. I f  re is a minimum, ff = A = 0, while 
for a first-order saddle point A = 1 and ff = 0, that is, ff = 0 for both types of  
critical points. 

The choice of a ensures that ~- ~R(r) will change continuously with r along minimum 
energy path P. Furthermore, since the transformation involved in the diagonaliza- 
tion of ~- ~H(r) is also continuous, the eigenvalues of " -~H(r )  must depend con- 
tinuously on r. Consequently, index ff must be zero for a set of infinite number of  
points in the neighbourhood of rc, i.e. in a coordinate domain D, rc ~ D. 

The continuous dependence o fg ( r )  and ~- ~H(r) on r along minimum energy path P 
implies that by utilizing definition (10) both g(r) and '~- ~H(r) may be parametrized 
for the given path P in terms of reaction coordinate s: 

g<p)(r) --> g(sv) (29) 

- IHw~(r ) ---> "- 1H(sp) (30) 

Vector g(sp) and matrix ~- ~H(se) give a complete description of the directional and 
curvature properties of  minimum energy path P. 

In the following analysis we shall ignore those coordinate domains that have been 
termed chemically unimportant at the outset: domains where the distance between 
two nuclei approaches zero. We may always assume that these domains are open 
sets. The excluded domain D~xo, may then be defined as the union of open balls, 
G(r,  p), centered at points rr, i.e. at points where the coordinates of  two or more 
nuclei become identical: 

D .... = U G(G, P) (31) 
} ,  

where the p radius is a suitably chosen small positive value. 

I t  is clear that for a small enough p value the omission of D~xo, from our analysis 
is perfectly permissible: no chemical reaction path may possibly enter domain D~,o~. 
It  is also easy to show that whenever two disjoint (non-connected) coordinate 
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domains DA and DB are separated by Doxol, then DA and DB must have equivalent 
subdomains, as a consequence of the symmetry properties of one or more of the 
coordinates. A simple example for this case is the (fixed bond length) pyramidal 
inversion of NH3, carried to the extreme of three collapsing H atoms (closed 
umbrella). Beyond this point the H atoms would part again, and the remainder of 
the process would be symmetrically equivalent to the first part before the collapse. 

A connected coordinate domain D, may be defined as the collection of all points r 
with the following two properties: 

1) if r ~ D~ then/~(r) = / z  
2) if rl, r2 E Du, then there is a P path interconnecting rl and r2, such, that for every 

r e P tz(r) = /z ,  that is, P lies entirely in D,. 

Space R of nuclear coordinates may be partitioned into a set of (D~} domains, that 
may include several disjoint domains with the same index/~. This partitioning reflects 
the curvature properties of the energy hypersurface, since the D~ domains are defined 
in terms of the Hessian ~-ZH(r) of the local "hor izontal"  subspace ~-lR(r) at 
each point r. The connectedness property within each D~ is ensured by the con- 
tinuity of point series consisting of points r where g(r) ~ O. Critical points r~, 
g(re) = 0, are special, since continuity is guaranteed only along a minimum energy 
path. 

The significance of various D, domains of energy hypersurfaces is illustrated by the 
model surface shown in Fig. 2. For sake of simplicity we shall assume that this 
model surface is given in terms of rectilinear coordinates. Minimum energy path P 
interconnects m, the minimum of the reactants and m', the minimum of the 

Fig. 2. Typical energy surface parti- 
tioning into D r domains. Minimum 
energy path P is stable with respect to 
displacements orthogonal to path 
vector a. Symbols m, M and S stand for 
minima, maxima and saddle point, 
respectively 
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products. Saddle point S lies on the ridge between maxima M and M'.  P intersects 
the equipotenfial contour lines perpendicularly, the broken lines show the bound- 
aries of various D r domains. The two minima may appear to belong to two distinct 
Do domains, however, the two segments are connected: by definition, for first- 
order saddle point S/~(vs) = 0, that is, rs E Do. On the other hand, maxima M and 
M'  are located in two disjoint domains, in D1 and D~, respectively. The most im- 
portant feature of the above model is that the entire minimum energy path P is 
contained in a single domain D, with index/~ = 0. We shall see that this is indeed the 
most common case and Do domains play a predominant role in the energy hyper- 
surface representation of chemical reactions. 

The energy hypersurface is "concave from above" in a domain Do: since tL(r) = 0 
for all r E Do, these points r represent minima along any coordinate direction 
orthogonal to the gradient g(r)  (or to vector a(r), if r is a critical point, r = re). 
That is, any local variation Ap, i.e. any displacement of a steepest descent path, 
orthogonal to the gradient, would result in an increase of the energy. Consequently, 
at point r, a steepest descent path is stable with respect to any displacement 
orthogonal to the path, whenever ~(r) = 0. By contrast, whenever t~(r) > 0, there 
are just/z(r) linearly independent coordinate directions (hence for/~ > t infinite 
number of linear combinations) all orthogonal to g(r), along which a displacement 
of the path would result in an actual lowering of the energy. Consequently, if a 
steepest descent path passes through a point r with k~(r) > 0, then it is unstable 
with respect to certain displacements orthogonal to g(r). An example for the latter, 
unstable path is the steepest descent lava flow on the surface of a conical volcano. 

At any ordinary point r ~ re a minimum energy path P is a steepest descent path, 
and all the above applies. In addition, a minimum energy path P is always stable 
with respect to displacements orthogonal to path vector a(rc) at a non-degenerate 
critical point re. This is trivially true if rc is a minimum, i.e. A(rc) = 0. If  rc is a 
first-order saddle point, i.e. A(rc) = 1, then path vector a(rc) is the eigenvector of 
H(rc), belonging to the single negative eigenvalue, hence within the subspace 

-iR(rc), orthogonal to a(rc), the curvature is positive along any direction. Con- 
sequently, minimum energy path P is stable with respect to any displacement within 
~-~R(rc). For both minima (A = 0) and first order saddle points (A -- 1) index 
/z = 0, and higher order saddle points with index A(rc) > 1 do not occur along 
minimum energy paths [2]. 

We may summarize the above observations in 

Theorem 1: If P c Du is a segment of a steepest descent path or that of a minimum 
energy path, then P is stable with respect to displacements within D u in any direction 
orthogonal to path vector a(r) if and only if/z = 0. 

Theorem 1 represents the link between the intuitively plausible concaveness of 
chemically important "reactive domains" of energy hypersurfaces, and the 
stability of minimum energy reaction paths. A minimum energy reaction path can 
be regarded as an idealized guideline for real chemical processes only if it is stable 
with respect to displacements orthogonal to the gradient. 
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The  special propert ies  (7) o f  Riemannian  metric  tensor n+ lg~j and the positive 
definiteness of  " - t I t ( r )  for  interior points r of  Do imply a simple rule, interrelating 
equipotential  contour  surfaces, gradients and tangent  planes. An equipotential  
contour  surface (E = const) for  any fixed E(r) value may  be defined as the point  
set 

Fe=oonst = {r':E(r') = E(r)} (32) 

A ne ighbourhood  GE(r, p) of  point  r on such an equipotential contour  surface F 
may  be given as the intersection 

G~(r, p) = G(r, p) n FE=~(,.) (33) 

where G(r, p) is a ball o f  radius p > 0 a round  point  r. The  hyperplane  "-iR(r) at  
point  r divides the space R into two parts. For  interior points o f  Do, r ~ Do, r r BD0, 
where BDo is the boundary  of  Do, the negative gradient  -g(r)  (the steepest descent 
direction) and a ne ighbourhood  GF(r, p) of  equipotential  contour  surface F~ = ~(,) fall 
on the same side of  hyperplane " -  ~R(r), i.e. into the same one of  the two segments 
of  R. For  any other  domain  D,,  F > 0, there is no such Gs(r, p) ne ighbourhood  of  
any r ~ D,  that  would not  have points falling on the side of  " -  ~R(r) hyperplane 
opposi te  to -g(r).  This "Do domain  ru le"  is trivially true and is easily visualized 
for  the n = 2 case, as is shown in Fig. 3. In this case the equipotential  contour  sur- 
faces and the " - i R ( r )  hyperplane become contour  lines and tangent  lines, respect- 
ively. Fo r  points r ~ Do, v e c t o r - g ( r )  and the E = const curve [E = E(r ) ]  appear  
on the same side of  tangent  line " -  ~R(r), while for  points r e D~ they appear  on 
opposi te  sides. Fo r  points r falling on a min imum energy pa th  P, this Do domain  

Max 

F (L) = 0 
E = c~,,~.~ s163 

�9 r 

E = CONST 
/~(r)  = I 

/ ~ - '  R(r) 
Fig. 3. Illustration of the "Do domain rule". In a 
Do domain equipotential contour line E = const., 
and vector -g(r) fall on the same side of tangent 
~-1R(r), by contrast to a D1 domain (instability 
region), where they fall on opposite sides 
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rule is equivalent to the stability condition derived earlier. Since only the steepest 
descent property of  minimum energy reaction paths has been utilized in the above 
derivations, the results hold true for steepest descent paths in general. Domains and 
equipotential contour lines shown in Fig. 2 clearly follow this rule. It  is also evident 
that minimum energy path P on this model surface is a stable path, since any dis- 
placement of the path, orthogonal to the gradient g (r), causes an increase in energy. 

Domains Do are the reactive domains of  primary importance on energy hyper- 
surfaces. In order to utilize the special properties of  domains Do, it is essential to 
determine the extent and the boundaries of  these domains. At a boundary point r 
of  a domain D,, where a tz --~/, + 1 change occurs, the number of negative eigen- 
values of  ~-1H(r)  changes by one. With the exception of critical points rc, matrix 
~-iH(r) and eigenvalues %(r) depend continuously on r along any path P. This 
implies that at a boundary point r of  D~, r # re, at least one eigenvalue c,k becomes 
zero. This result may be generalized for any A/z > 0 change at a boundary: 

Theorem 2: I f  r is a boundary point of  domain D, and g(r) # O, then ~-lH(r) is 
singular. I f  r lies on a BD, IDv boundary, then at least ]/z - v I eigenvalues of ~- 1H(r) 
become zero at point r. 

As the definition of domain D, implies, point r on a BD,/D~ boundary (/x < v) 
belongs to D,. That is, a D,  point set is closed at a BD,~Dv boundary if/z < v; D, 
is open at a BD,/o~ boundary if ix > v. 

A general D, domain may have several different types of  boundary segments, some 
of them closed, others open. Points on the boundary of more than two domains 
belong to the domain of the smallest index tz. 

The smallest possible index is t* = 0, that indicates some further special properties 
of  domains Do. 

A Do domain may extend to infinity if it contains points representing infinite nuclear 
separation. Alternatively, Do may be bounded, i.e. the entire Do domain may be 
surrounded by other D,  domains,/~ # 0. In the latter case Do is a closed set. In 
general, a bounded domain D, is a closed set if the indices v of all neighbouring 
domains Dv are larger than/z, t* < v. 

Theorem 2 provides a simple scheme for the partitioning of energy hypersurfaces, 
and for the partitioning of the underlying R space into a set of disjoint D, domains. 
The union T of all points r where ~- ~tI(r) is singular, 

T = {r : det [~-lH(r)] = 0} (34) 

contains all boundary points that are not critical points. Point set T may be visual- 
ized as a shell system of n - 1-dimensional hypersurfaces partitioning the R space 
into various D,  domains. 

In Fig. 2 the BDoID1 c T boundaries are shown as broken lines. As a consequence of 
the Do domain rule, the BDo/D1 boundary lines intersect the equipotential contour 
lines FE . . . . .  t at inflection points. 

As this example shows, the region around the saddle point S is of  particular interest. 
At point S the region of stability for a reaction path reduces to a single point, that is 
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equivalent to the condition set in the definition of minimum energy paths: it must 
pass through the saddle point. The energy surface shown is nearly quadratic in a 
relatively large neighbourhood of S as is indicated by the near linearity of  boundar- 
ies BDo~D1 close to point S. Elementary algebraic treatment shows that for the 
simplest quadratic saddle surface E ( x ,  y )  = x 2 - y 2  the BDoID 1 boundaries are 
indeed straight lines, y = x and y = - x .  For this ideal saddle surface the (x, y) 
plane is partitioned into three domains by these boundaries: 

Do = {(x ,y) :  ]Y[ t> Ix[} 

D1 = {(x ,y) :  [Yl < - x , x  < 0} 

Di = {(x, y)  : l Y[ < x, x > 0} 

and a steepest descent path is stable only in Do. 

While the example shown in Fig. 2 is typical for most chemical reactions, and a Do 
domain of stable steepest descent paths is sufficient in most instances to describe 
minimum energy reaction processes, nevertheless, a minimum energy path is not 
necessarily confined to a Do domain. In Fig. 4 a model of  such an irregular, although 
probably not rare, process is shown. (Notations in this figure are the same as in 
Fig. 2.) Although most of  the P minimum energy path falls into domain Do, it also 
enters domain D~, that is, a domain of index t~ = 1. This domain D~' may be 
visualized best as a local protrusion on the otherwise smooth slope, that is not 
prominent enough to give rise to a local maximum. The progress along the minimum 
energy relief path "+ 1p over D~' is similar to the motion of a drop of water on the 
surface of a ball. By stretching this analogy somewhat further, if the ball is trans- 

Fig. 4. Model surface with unstable 
minimum energy path in domain D~. 
Instability region D~ does not influence 
the outcome of the chemical reaction 
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parent and placed on a horizontal plane, and one observes the motion of the shadow 
of  the drop at noon, the shadow follows the direction of steepest descent. However, 
a displacement orthogonal to the gradient would also lower the potential energy of 
the drop, that is, the steepest descent path of the shadow on the plane is not a stable 
path. In the example of Fig. 4, the minimum energy reaction path P is also unstable 
in domain D~. An important difference between D~' and the other two domains of 
index t~ = 1, D1 and D~, is the fact that DE does not contain a local maximum point, 
while D1 and D~ do. Such protrusions and in general, points r ~ D,,/z > 0 are not 
likely to occur regularly along minimum energy paths, nevertheless, they may be 
present for certain paths. Such "buil t  in"  instability may be quite significant for 
real reaction paths that involve contributions from various vibrational modes, 
linearly independent of the steepest descent direction. Extensive instability regions 
along minimum energy paths may invalidate the claim that real reaction paths are 
approximately centered on minimum energy paths. Due to a small perturbation the 
minimum energy path may undergo large shifts, accompanied by an actual lowering 
of the energy for the same reaction coordinate value s. It is possible that such a shift 
causes the actual path to enter a D~ domain, different from domain Do that contains 
the minimum of products for the original minimum energy path. That is, an 
extensive instability domain D.,/~ > 0, along the minimt/m energy path may allow 
small perturbations to divert the path to a minimum of different products in D~, 
thus the net result of the process may be an entirely different compound. In general, 
the presence of D., tz > 0 instability regions enhances the possibility of large 
deviations from an ideal minimum energy path. 

On the model surface shown in Fig. 5, the minimum energy path P enters domain 

Fig. 5. Model surface with extensive 
instability region. Small perturbation 
may cause large shift in the minimum 
energy path P, associated with the 
lowering of energy. Path P" leads to a 
product m", different from product m" 
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D1, where due to the instability of  the path a small perturbation may cause an 
extensive shift tangential to the equipotential contour line. It  is clear that the actual 
shift shown causes a lowering of energy. Even if the ideal steepest descent resumes 
after this shift, the new path P '  would lead to minimum m" instead of minimum rn', 
thus to a different product. 

Small contributions from various vibrational modes to the actual reaction path and 
small perturbations do not alter the outcome of the reaction if the entire minimum 
energy path falls into a Do domain. Consequently, such a stable minimum energy 
path, subject to small perturbations, may be associated with a single reaction 
mechanism as the example shown in Fig. 2 indicates. 

Under fortuitous circumstances an unstable minimum energy path may also 
correspond to a single reaction mechanism, as shown by the model in Fig. 4. Here 
domain of instability D~' is embedded in domain Do and a shift within D~' cannot 
produce a path that would lead to a different minimum. However, as the model 
surface of Fig. 5 shows, this is not always the case, and a shift within the instability 
domain D1 may lead to a product at m" instead of one at m'. Although in the strict 
sense the ideal minimum energy path does lead to m', the effect of  the instability 
region cannot be predicted with certainty within the Born-Oppenheimer energy 
hypersurface model. Consequently, such an unstable minimum energy path, subject 
to small perturbations, may lead to more than one minimum, i.e. it may be associ- 
ated with several actual reaction mechanisms. 

A sufficient but not necessary condition of a one-to-one correspondence between 
reaction mechanisms and minimum energy paths is that the latter are entirely con- 
tained within Do domains. 

An illustrative example is the motion of a bobsled over a convex terrain. I f  at the 
instance of leaving the concave route (Do) and entering the convex terrain (Dz) the 
bobsled has the slightest momentum orthogonal to the steepest descent path, then 
over this convex terrain it may get hopelessly off-course. A similar momentum in a 
concave route (Do) would cause only a "v ibra t ion"  of  negligibly small amplitude 
across the ideal path. 

3. Conclusions 

Partitioning of  the R coordinate space of energy hypersurfaces into mutually 
exclusive {D~} connected point sets generates a hierarchy of coordinate domains in 
terms of their chemical importance. Do domains are of  primary importance, since 
all minima and first-order saddle points necessarily fall into such Do domains. In 
addition, the stable regions of  steepest descent paths coincide with the Do domains, 
as is established by Theorem 1. Domains D~ with/z > 0 may also occur along a 
minimum path and in these domains the minimum energy path, in fact any steepest 
descent path, is unstable, n- 1H(r) is necessarily positive definite at A = 0 and h = 1 
type critical points, that is,/~ = 0 at these points of the path. Since the greater the 
index/~, the more eigenvalues of  n- 1H(r) must become negative, Du domains with 
large index/z are not likely to fall near the A = 0 and A = 1 type critical points. 



Reactive Domains of Energy Hypersurfaces I l i  

Consequently, the larger the index/~, the less likely that a D, domain would occur 
along a minimum energy path. 

It is evident that large perturbations along a reaction path in any coordinate 
domain may alter the outcome of the reaction. Small perturbations, e.g. small 
vibrational contributions, on the other hand, will not change the outcome of the 
reaction, as long as the minimum energy path is contained in a Do domain. An 
instability region D,, ~ > 0, however, may allow small perturbations to cause large 
shifts of actual reaction paths, that may also alter the outcome of the reaction. In 
the latter case the Born-Oppenheimer energy hypersurface model is unable to 
predict the reaction products if small perturbations are allowed. Consequently, 
several sets of products and several sets of actual reaction paths (reaction mechan- 
isms) may be associated with a single ideal minimum energy path passing through an 
instability domain D,,/~ > 0. 
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